DEVELOPMENT OF A FLOOD FORECASTING SYSTEM IN HYDROGRAPHIC BASINS BY MEANS OF ARTIFICIAL NEURAL NETWORKS

Paulo Bousfield, Cladir Zanottelli, Cátia Ganske and Sidney Schossland UNIVILLE

> Flávio Lapolli UFSC

Lorival Chapuis SOCIESC

ABSTRACT

Aiming to eliminate or minimize some problems caused by floods in hydrographic basins, this paper intends to develop a flood forecasting system. As a technique to solve the flood forecasting problem, it uses artificial intelligence, the learning paradigm of connexionist networks. In order to create the Artificial Neural Network – ANN, a database was created through the use of historical series from 2008 and 2009 of the daily pluviometric data (amount of rain accumulated in one day, in millimeters) collected from 21 meteorological stations located in a given Hydrographic Basin. Daily fluviometric data has also been used (river level, in centimeters) collected at the specific location the forecast is wanted. The data has been obtained and made available by the National Agency of Water (ANA – Agência Nacional de Águas). In order to obtain an ANN that had a good generalization possibility and aiming at finding the number of neurons in the hidden layers, a number of experiments has been designed using feedforward network, supervised learning and backpropagation algorithm. The success of the experiments was based on the result of the average square error and linear regression of the network forecast obtained results. It was clear that the use of alternative techniques, such as the connexionist learning, in this case the ANNs to be used in flood forecasting systems, is appropriate and is highly relevant to improve the hydrological modeling techniques. The Itajaí-Açu River Basin has been chosen as the area of interest, with flood forecast for the city of Blumenau, in the State of Santa Catarina – Brazil.

KEYWORDS

Artificial Neural Networks, Hydrographical Basins, Flood Forecast.

1. INTRODUCTION

From the 80's on, the world has been devastated by a phenomenon called El Niño. El Niño is a worldwide climatic phenomenon accountable for climatic abnormalities, such as severe draughts, hurricanes and floods. In Brazil, in the State of Santa Catarina, the most serious abnormality is probably the floods, such as the ones that happened in 1983 (Frank, 1995), and, more recently, in 2008.

For (Villela, 1976) flood or inundation is the occurrence of relatively big flows of superficial outflow. Normally, it causes inundations characterized by the overflow of the water that goes through the natural watercourse of a river.

A flood forecasting system at a specific location in a river does not intend to solve the problems caused by floods, but to avoid some of the social and economic problems arising from these inundations.

The areas more likely to be flooded have been enduring the problems caused by inundations and it is extremely important to have a flood forecasting system in these areas that can warn the civil defense, firefighter, police and army authorities, as well as the entire population of the area to be affected on the brink of a river overflow.

Traditionally, hydrological studies use numerical and stochastic models forecast phenomena, such as precipitation, river overflow, and inundation potential or risk. This paper proposes, for the specific problem of flood forecasts in hydrographic basin, the use of connexionist networks, more specifically the Artificial Neural Networks.

The implementation, training and validation of a connexionist network for such purpose will have, as its base, data of daily pluviometric and fluviometric measurements for the main streams of the chosen basin. This data has been provided by the National Agency of Water (ANA – Agência Nacional de Águas), in charge to obtain and make such data available.

There are, basically, two types of input data: those resulting from the pluviometric measurements of the tributaries, downstream the flood forecast location, and those obtained through the main river fluviometric level registration (upstream) (Pinto,2007). Historical data of a period from 2008 and 2009 will be used.

Aided by this system and through the pluviometric precipitation data it will be possible to determine immediate flood danger in a given hydrographic basin and, thus, provide against the big floods, avoiding material damage and even the loss of human lives.

2. THE METHOD

The flood forecasting system this paper is about, uses Artificial Intelligence concepts in the part of connexionist networks, the artificial neural networks.

The artificial neural network to be developed will have, as input data, the precipitation quantity collected in the several pluviometric stations of the hydrographic basin in question. The output will be the river height level of the chosen city.

The data was supplied by ANA in two text files: one file with the daily pluviometric data of each one of the 21 stations in a 24-hour period as shown in Figure 1; and the other file contains the daily fluviometric data for Blumenau station. The fluviometric data refers to the Itajaí-Açu river level in two distinct timetables: 07:00 AM and 05:00 PM. Both files contain historical series in the period comprised between 1929 and 2009 as shown in Figure 2 below.

MEstação ocal:	DENEDITO	NOVO		UC: 5	ANTA CATA	RINA	Entidade: Sb: 83	Lat: 26*	46'52" L	ong: 49*2	1 21"		
DIA	JAN	FEV	MAR	ABR	MAI	JUN	JUL	AGO	SET	OUT	NOV	DES	I ANUA
													1
01	0,0	10,3	2,4	0,0		0,0		0,0	0,0	3,7	0,0	0,0	1 -
02	0,0	0,0	0,0	0,0	0,0	0,0	0,0	9,5	0,0	5,1	0,0	0,0	1 -
03	2,4	1,4	7,1	3,3	0,0	0,0		40,8	1,4		17,4	0,0	1 -
04	0,0	0,0	0,0	9,2		0,0		12,6	1,6		4,6	16,9	1 -
05	0,0	0,0	0,0	9,3	0,6	0,0	0,0	0,0	0,0	67,3	42,0	0,0	1 1
06	0,0	0,0	5,7	0,0	0,0	0,0	0,0	0,0	0,0	14,1	6,9	2,3	i -
07	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	9,8	0,0	8,6	1.1.1
08	0,0	30,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	8,9	0,0	0,0	1
09	0,0	0,0	24,9	0,0	0,0	0,0	0,0	0,0	0,0	37,9	0,0	0,0	1 -
10	24,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	11,4	6,9	0,0	1 -
11	10,9	1.2	0.0	0,0	0.0	0.0	0.0	0,0	0,0	13.6	40.2	0.0	
12	13,1	16,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	5,6	0,0	0,0	i -
13	0,0	0,0	2,1	0,0	0,0	0,0	0,0	0,0	31,3	3,8	0,0	19,8	1 -
14	0,0	0,0	0,0	0,0	1,6	15,4	0,0	0,0	14,4	0,0	0,0	18,8	1.1
15	0,0	44,0	3,2	0,0	1,3	0,0	0,0	0,0	0,0	0,0	17,1	0,0	1
16	0,0	15,8	0,0	0,0	12,0	0,0	0,0	0,0	0,0	4,7	39,0	0,0	
17	9,1	0,0	0,0	8,3	0,0	0,0	0,0	0,0	0,0	0,0	27,8	0,0	1 -
18	3,9	19,8	0,0	7,5	0,0	0,0	0,0	0,0	0,0	12,9	4,8	0,0	1
19	0,0	0,0	0,0	0,0	0,0	28,5		0,0	0,0	17,6	5,9	0,0	1 -
20	43,8	0,0	0,0	0,0	0,0	0,0	4,6	0,0	3,7	23,6	0,0	0,0	1 1
21	41,9	27,8	0,0	0,0	12,1	0,0	0,0	3,3	4,3	36,8	18,7	58,4	1 -
22	14,5	0,0	0,0	0,0	24,3	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1.1
23	0,7	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	0,0	1.1
24	7,3	37,1	0,0	0,0	4,4	0,0		0,0		0,0	0,0	8,5	1 -
25	30,6	13,7	0,0	0,0	0,0	7,3	0,0	0,0	0,0	0,0	0,0	13,6	1 1
26	30.3	0.3	0.0	0,0	0.0	52.7		0.0	0,0	0.0	56.8	0.0	
27	30,8	0,0	0,0	0,0	0,0	3,1		0,0	4,1	0,0	0,0	24,0	1 -
28	13,9	3,7	0,0	0,0	11,9	0,9		0,0	7,3	0,0	0,0	45,6	1 -
29	10,1		0,0	0,0		7,4		0,0	13,6	8,3	0,0	1,1	1.00
30	19,9	-	0,0	0,0		0,0		0,0	3,8		0,0	2,7	1
31	50,0		0,0	-	0,0		0,0	0,0	-	3,2	-	0,8	1.1
TOTAL	357.2	221,7	45.4	37,6	68,2	115,3	95,5	66,2	97,1	340,8	255,1	221,1	1954,
MAXIMA	50,0	44,0	24,9	9,3	24,3	52,7		40,8	31,3		56,8	58,4	1 357,
	31	15	9	5	22	26	19		13		26		1 31/0
NDC	18	13	6	5	8	7	3	1	11	20	13	13	1 12

	(DIAS PORTUAIS DIARIAS (en centimetros) - 19/1									
ESTA‡"	0: BLUMENAU : RIO ITAJAI-ACU	U	C¢digo: 83800002 F: SANTA CATARINA MARCO	Entidade: DNAEE Sb: 83 Lat	Drenagen : 26§55'00" Lon	: 11803,0 g: 49§04'04"				
DIA	JANEIRO	FEVEREIRO	MARCO	ABRIL	MAIO	JUNHO	JULHO	AGOSTO	SETEMBRO	
	07/17:HS/Media		07/17:HS/Media					07/17:Ms/Media		
01 02 03 04 05	467/ 478 472 645/ 717 681 690/ 653 672 607/ 582 594 583/ 585 584	227/233230 245/236240 228/217222 209/203206 190/197193	255/250253 247/237242 230/230230 248/253251 345/360353	353/ 318 335 279/ 260 269 245/ 232 238 225/ 224 224 223/ 216 219	310/ 302 306 290/ 287 288 270/ 270 270 270/ 266 268 260/ 255 258	220/22020 218/217217 217/220219 230/230230 236/253244	260/260260 260/259260 277/327302 523/678600 900/893896	179/ 172 175 168/ 165 167 158/ 157 158 156/ 158 157 157/ 156 157	183/ 184 183 170/ 161 166 166/ 162 164 157/ 146 151 160/ 166 163	
05 07 08 09	793/802 797 695/634 664 602/598 600 553/531 542 475/543 509	192/ 198 195 218/ 224 221 237/ 231 234 236/ 228 232 216/ 217 217	482/ 525 504 560/ 524 542 475/ 427 451 377/ 353 365 350/ 342 346	210/ 207 208 204/ 193 199 195/ 188 192 190/ 211 201 233/ 240 237	250/ 317 283 417/ 535 476 682/ 738 710 678/ 705 692 659/ 637 648	322/ 338 330 342/ 333 338 465/ 718 592 1045/1057 1051 898/ 801 850	778/703740 615/543579 475/422449 372/338355 297/289293	168/ 177 173 202/ 278 240 367/ 359 373 308/ 312 310 283/ 271 277	185/ 207 196 303/ 390 347 351/ 313 332 260/ 232 246 215/ 202 208	
11 12 13 14	690/709 699 753/730 742 647/605 626 687/653 670 610/568 589	240/253247 273/285279 295/297296 350/456403 490/460475	335/326331 363/340351 410/404407 357/340349 415/396406	235/219227 203/197200 188/186187 184/179182 173/172173	580/ 558 569 488/ 402 445 361/ 338 349 295/ 283 289 280/ 274 277	700/ 660 680 592/ 545 569 479/ 428 454 413/ 375 394 342/ 329 335	280/ 275 278 263/ 257 260 240/ 239 240 237/ 230 233 225/ 223 224	262/245253 232/223228 216/209213 207/217212 208/206207	186/ 190 188 191/ 217 204 240/ 252 246 238/ 230 234 22/ 218 120	
16 17 18 19 20	540/ 500 520 363/ 338 351 312/ 286 299 267/ 257 262 249/ 235 242	413/ 383 398 340/ 330 335 325/ 297 311 283/ 260 272 237/ 234 235	410/ 390 400 407/ 415 411 410/ 393 401 350/ 327 338 460/ 453 457	272/ 353 313 470/ 485 478 435/ 363 399 338/ 310 324 260/ 260 260	258/250254 244/242243 240/238239 236/234235 233/230231	317/ 303 310 296/ 292 294 287/ 282 285 293/ 273 283 268/ 261 265	217/ 214 215 207/ 205 206 200/ 194 197 198/ 190 194 186/ 183 184	180/ 177 178 168/ 172 170 167/ 170 168 165/ 168 167 163/ 166 165	202/ 197 200 193/ 187 190 183/ 177 180 169/ 158 164 156/ 157 157	
21 22 23 24 25	249/235242 228/226227 225/218222 217/240228 233/217225	236/267251 335/378356 447/465456 487/490489 562/527544	477/ 461 469 398/ 353 376 390/ 386 388 382/ 365 374 338/ 303 321	405/ 583 494 800/ 797 799 705/ 696 700 593/ 545 569 497/ 443 470	230/230230 229/228228 228/227228 226/225226 245/253249	255/254254 255/258256 264/265265 276/267272 257/245251	184/ 182 183 180/ 177 178 188/ 172 180 178/ 174 176 169/ 163 166	162/153 158 150/141 145 145/150 148 160/149 155 183/163 173	176/ 153 165 172/ 145 158 178/ 169 174 182/ 182 182 179/ 176 177	
26 27 28 29 30 31	212/ 205 208 202/ 196 199 200/ 200 200 200/ 185 192 192/ 200 196 217/ 240 228	465/ 407 436 367/ 315 341 282/ 264 273 	285/ 323 304 565/ 553 559 570/ 567 569 560/ 550 555 523/ 502 513 443/ 385 414	405/ 380 392 342/ 305 324 283/ 275 279 260/ 253 256 255/ 250 253	282/295288 303/300301 283/260272 257/251254 248/240244 225/223224	243/238 240 252/244 248 247/248 247 280/273 276 265/262 263	158/ 153 156 155/ 150 152 153/ 150 151 152/ 158 155 178/ 202 190 212/ 208 210	191/ 182 186 164/ 156 160 152/ 150 151 138/ 137 138 139/ 140 140 167/ 182 175	160/ 157 158 161/ 180 170 227/ 306 267 295/ 282 288 288/ 325 306	
HEDIA MAXIMA DIA MININA DIA	435 802 6 185 29	307 562 25 190 5	394 570 28 230 3	320 800 22 172 15	325 738 8 223 31	358 1057 9 217 2	286 900 5 150 27	189 387 8 137 29	203 390 7 22 15	
085: ¢*	- estimado, D - NDC - NE de di	duvidoso, branco as de chuva. Qual	= real, AC = acum idade dos dados: C	ulado, SO = sem d ONSISTIDOS	bserva‡"o, RS/RC	= regua seca/caid	a, - = n"o coleta	udo		

Figure 1. Photo of the input data

Figure 2. Photo of the output data

Among the several artificial neural networks found in the literature, the multi-layered feedforward network with the backpropagation training algorithm has been chosen to be implemented in the development of this flood forecasting system.

The area of interest chosen for the development and implementation of the flood forecasting system was the Itajaí River Basin, in the State of Santa Catarina, more specifically, the Itajaí-Açu River in the city of Blumenau. The location of such stations in the map of Santa Catarina is shown in Figure 3 (Cordero, 2004).

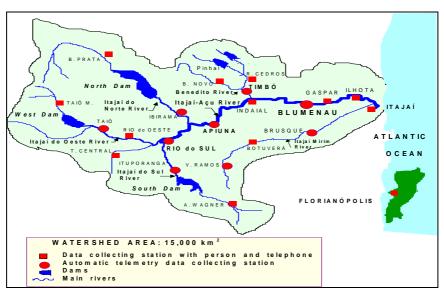


Figure 3. Hydrografhic Basin of Itajaí-Açu River

The interest for the city of Blumenau is due to the several inundations it has suffered along its history(Frank,1995), the inexistence of a flood forecasting system using Artificial Intelligence concepts and this city's economic and industrial importance for the State of Santa Catarina.

The system implementation will be carried out by Mathworks' MATLAB R2008A software, which is a technical and scientific computer language, very appropriate to implement some mathematical functions, besides integrating the essential requisites of a technical computer system with numerical calculation, graphical and application tools and communication resources with other platforms.

2.1 Data Manipulation/Handling

In the pluviometric data file, values are expressed in millimeters of daily precipitation. For each station of interest, the data referring to the years 2008 and 2009 has been selected through a text editor.

The choice of the data for the year 2009, a recent year, can be justified for the representation of the current status of the Itajaí-Açu River Hydrographic Basin, considering that the changes in the superficial outflow rate are influential in the concentration time and in the level of the river in Blumenau. It would not be coherent, for example, to train a network with data of 1940, once this training would not incorporate the changes occurred in the hydrographic basin during the last 69 years.

From the original file, only the data that was interesting for each station has been selected and items such as presentation tables, subtitles, etc. have been disregarded. One file has been obtained for each station.

In the fluviometric data file, the river level values are expressed in centimeters. Following the criterion described in the previous item to choose the historic series – 2008 and 2009, pluviometric data has been selected for Blumenau's station, the station of interest to forecast the river level. The original file has two daily values (07:00 AM and 05:00 PM). Nevertheless, one file with the 07:00 AM data has been created due to the statement of the Itajaí-Açu River Hydrographic Basin expert (Cordero, 2004) who said that the concentration time of the Itajaí-Açu River Basin is approximately 24 hours.

2.2 Development of the Artificial Neural Networks

The backpropagation network has been chosen because it is a network that adapts to the flood forecasting problem, with historic series data that allows the network to learn by means of supervision. Other reasons for this network choice are its robustness, capability to eliminate small flaws and the fact that it is a very much disseminated and successfully used model in several works of hydrology (Esquerre, 2003; Braga, 2007).

The main characteristic of a backpropagation network is the possibility to classify non-linearly separable standards (Barreto, 2001), which is one of the characteristics of the flood forecasting problem, due to the

inclusion of more than one layer in the optimization algorithm based on the change of weights and use of the delta rule.

For the transfer function of each neuron, the sigmoid function, hyperbolic tangent arc has been used. Before the data was used in the algorithm it went through a normalization process. The normalization process consists of dividing all the elements of the set by the greatest element of this set, thus obtaining a file with all the elements among -1 and 1. This process was made both with the input file and the output file.

The normalization process is required so that the data be in accordance with the sigmoid transfer function, hyperbolic tangent arc, that allows the neuron activation among -1 and 1. By not carrying out the normalization process, the calculated error is a high value that keeps constant along the time.

Due to the great amount of neurons in the input layer (data of the 21 pluviometric stations), we have chosen for a network architecture with one hidden layer with 20 neurons, with the sigmoid transfer function, and in the output layer one neuron (fluviometric date of the location of interest).

To determine the quantity of neurons in the hidden layer, several experiments were carried out. The execution of these experiments has comprised the modification of neurons of the hidden layer until the best performance was achieved, which means a greater approximation of the average square error, in relation to the desired error in a determined number of periods (Haykin, 2001). The network was trained with the Levenberg-Marquardt backpropagation.

3. EXPERIMENTS AND RESULTS

The more representative result obtained was a network with 20 neurons in the hidden layer, with mean square error -MSE 0,0018 and **R** 0,93 for the vector of training, as show Table 1.

	Percent (%)			Number Neurons		Number	MSE - Mean Square Error			R		
Algorithm	Train.	Valid.	Test	Hidden Layer	Performance	Season	Train.	Valid.	Test	Train.	Valid.	Test
LVM	70%	15%	15%	2	0, 00808	36	0, 0081	0, 0081	0, 0085	0, 6042	0, 5876	0, 5645
LVM	70%	15%	15%	4	0, 00716	86	0, 0072	0, 0081	0, 0071	0, 6660	0, 6478	0, 5658
LVM	70%	15%	15%	6	0, 00667	262	0, 0067	0, 0063	0, 0078	0, 6886	0, 6677	0, 6437
LVM	70%	15%	15%	8	0, 00386	221	0, 0039	0, 0041	0, 0055	0, 8310	0, 8270	0, 7565
LVM	70%	15%	15%	10	0, 00452	64	0, 0045	0, 0052	0, 0048	0, 8045	0, 7783	0, 7516
LVM	70%	15%	15%	12	0, 00845	283	0, 0085	0, 0073	0, 0084	0, 5907	0, 5709	0, 5804
LVM	70%	15%	15%	14	0, 00356	43	0, 0036	0, 0044	0, 0049	0, 8503	0, 7939	0, 7775
LVM	70%	15%	15%	16	0, 00352	39	0, 0035	0, 0034	0, 0041	0, 8477	0, 8662	0, 8091
LVM	70%	15%	15%	18	0, 00191	1000	0, 0019	0, 0020	0, 0020	0, 9228	0, 9000	0, 9643
LVM	70%	15%	15%	20	0, 00127	1000	0, 0018	0, 0016	0, 0016	0, 9374	0, 9322	0, 9268
LVM	70%	15%	15%	22	0, 00207	145	0, 0021	0, 0022	0, 0027	0, 9141	0, 9029	0, 8948
LVM	70%	15%	15%	24	0, 02560	89	0, 0026	0, 0033	0, 0031	0, 8980	0, 8473	0, 8424
LVM	70%	15%	15%	26	0, 00280	91	0, 0028	0, 0032	0, 0040	0, 8782	0, 8584	0, 8534
LVM	70%	15%	15%	28	0, 00604	16	0, 0060	0, 0080	0, 0087	0, 7236	0, 6992	0, 6371
LVM	70%	15%	15%	30	0, 00760	97	0, 0066	0, 0065	0, 0053	0, 7430	0, 6453	0, 5356

Table 1. Results of experiments for defining the architecture of the ANN

3.1 Presentation System and Network Architecture Developed

An interface using MATLAB as a tool itself was developed in order to use this system, as shown in Figure 4, and Figure 5 presents the architecture chosen by the experiments.

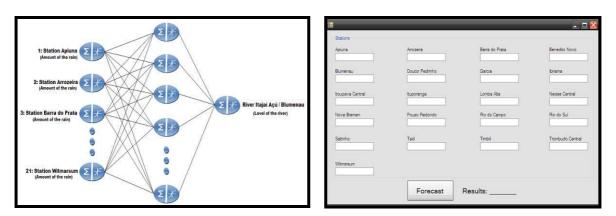
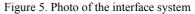



Figure 4. ANN Architecture of the proposed system

4. CONCLUSION

The learning of connexionist networks allows us to conclude that the Backpropagation network enables the forecast of floods and that the architecture of the chosen network has a great importance in the network performance, as it can be checked by the results obtained.

The development of this paper has been carried out in such a way that it allows it to be used to forecast floods in other hydrographic basins. For such, it is necessary that Artificial Neural Network is trained with the hydrographic basin data the forecast is intended to, by changing the network architecture regarding the inputs, if required.

The hydrologic concepts used to forecast floods do not use prior precipitations. It is suggested, however, that future papers predict the possibility of these prior precipitations to be used as the network input standard.

ACKNOWLEDGEMENT

The National Water Agency helped a lot in the availability of data.

REFERENCES

Barreto, J. M, 2001. Artificial Inteligence On the threshold of the century XXI. The Author, Florianópolis,

Brazil Braga, A. P et al, 2007. Artificial Neural Networks. Theory and Applications. LTC, Rio de Janeiro, Brazil

- Esquerre, K. P. S. O. R. 2003. Application of multivariate statistical techniques and artificial neural networks for modeling a system of treatment of industrial effluents. UNICAMP, Campinas, Brazil.pp 45-93
- Frrank, Beate, 1995 *Uma Abordagem para Gerenciamento Ambiental A Bacia Hidrográfica do Rio Itajaí, com Ênfase no Problema das Enchentes.* Tese submetida à Universidade Federal de Santa Catarina para obtenção do Grau de Doutor em Engenharia Ambiental, Florianópolis, Brazil

Haykin, Simon.2001. Neural Networks: Principles and Practice. 2. Ed. Bookman, Porto Alegre, Brazil.

- Marques, F. D et al.2005 Application of Time-Delay and Recurrent Neural Networks for Identification of Hingeless Helicopter Blade Falpping and Torsin Motions. J. of the Braz. Soc. Of Mech. Sci. & Eng. April-June 2005, Vol. XXVII, No 2, Brazil. pp 97-103.
- Medeiros, P. A.; Nerilo, N.; Cordero, A, 2004. Chuvas torrenciais no estado de Santa Catarina. Simpósio Brasileiro de Desastres Naturais, GEDNIUFSC. (CD-ROM) Florianópolis, Brazil. p.787-794
- Pinto, L.S.P.; Holtz, A.C.T; Martins J.A. ;Gomide, F.L.S. ,2007. *Hidrologia Básica*. Ed. Edgar Blücher, São Paulo, Brazil.

Villela, Swami M.; Mattos, Arthur, 1975. Hidrologia Aplicada. Ed. McGraw-Hill, São Paulo, Brazil.